My Account Shopping Cart Login
 
SHQ is a group of water soluble iron oxide nanoparticles with amphiphilic polymer and polydiallydimethylammounium chloride (PDDA) coating. There is no linkable reactive group on the surface of nanoparticles. The zeta potential of SHQ is more than +50mV. Their organic layers consist of a monolayer of oleic acid, a monolayer of amphiphilic polymer and a monolayer of PDDA. The thickness of the total organic layers is about 8 nm. The hydrodynamic size of the nanoparticles is about 14-16 nm larger than their inorganic core size measured by TEM.
SHQ is very stable in most buffer solutions in the pH range of 3-14.
SHQ can capture negatively charged molecules, such as DNA, RNA, through charge-charge interaction.
Catalog No.SizeAmount(Fe weight)Particle Amount(nmole) of 1 mg FePrice($) 
SHQ-10-1010 nm10 mg0.86199.00
SHQ-10-5010 nm50 mg0.86599.00
References:
1. L. Yang, X. Peng, Y. A.Wang, X.Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S.Nie, H.Mao. Receptor-Targeted Nanoparticles for In vivo Imaging of Breast Cancer. Clinical Cancer Research, 2009, 15, 4722-4732.
2. L. Yang, H. Mao, Z. Cao Y. A. Wang, X. Peng, X. Wang, H.K. Sajja, L.Wang, H.Duan, C. Ni, C. A Staley, W. C. Wood, X. Gao, S. Nie. Molecular Imaging of Pancreatic Cancer in a Preclinical Animal Tumor Model Using Targeted Multifunctional Nanoparticles. Gastroenterlogy, 2009, 136, 1514-1525.
3. L. Yang, H. Mao, Y. A. Wang, Z. Cao, X. Peng, X. Wang, H. Duan, C. Ni, Q. Yuan, G. Adams, M. Q. Smith, W. C. Wood, X. Gao, S. Nie. Single Chain Epidermal Growth Factor Receptor Antibody Conjugated Nanoparticles for in vivo Tumor Targeting and Imaging. Small, 2009, 5, 235-243.
4. J. Yang, J.Gunn, S. Dave, M.Zhang, Y. A Wang, X. Gao. Ultrasensitive Detection and Molecular Imaging with Magnetic Nanoparticles. The Analysis, 2008, 133, 154–160.
5. H. Duan, M. Kuang, X. Wang, Y. A. Wang, S. Nie, H Mao. Reexamining the effects of particle size and surface chemistry on magnetic properties of iron oxide nanocrystals: new insights into spin disorder and proton relaxivity. The Journal of Physical Chemistry C, 2008, 112, 8127–8131.
6. X. Peng, X Qian, H Mao, YA Wang, Z Chen, S Nie, DM Shin. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. International Journal of Nanomedicine, 2008, 3, 311-321.
7. L. Yang, Z. Cao, H. K. Sajja, H. Mao, L. Wang, H. Geng, H. Xu, T. Jiang, W. C. Wood, S. Nie, Y. A. Wang. Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and Tumor Imaging. Journal of Biomedical Nanotechnology, 2008, 4, 439-449.
Related Products
ProductDescriptionSize
SHPIron oxide nanoparticles with carboxylic acid5-30 nm
SYPLyophilized (Lyof™) iron oxide nanoparticles with carboxylic acid5-30 nm
SVPAutoclaved (AclaFTM) iron oxide nanoparticles with carboxylic acid5-30 nm
SHAIron oxide nanoparticles with amine5-30 nm
ICKCarboxyl terminated iron oxide nanoparticles with various diameters (10 nm-30 nm).10-30 nm
SHP-COMBOA group of 3 or 5 different iron oxide nanoparticles with carboxylic acid10-30 nm
SEIIron oxide nanoparticles with positively charged PEI surface10-30 nm
SMGIron oxide nanoparticles with PEG 10-30 nm
IRBIron oxide nanoparticles with Rhodamine B10 nm
IPGIron oxide nanoparticles with Protein G10-30 nm
ILALipid coated iron oxide nanoparticles with amine 10-30 nm

ProductDescription